
An Improved Adaptive Multi-Start Approach
to Finding Near-Optimal Solutions to the Euclidean TSP

Dan Bonachea
Computer Science Dept.
University of California

Berkeley, CA 94720
bonachea@cs.berkeley.edu

Eugene Ingerman
Mathematics Dept.

University of California
Berkeley, CA 94720

eugening@math.berkeley.edu

Joshua Levy
Mathematics Dept.

University of California
Berkeley, CA 94720

jdl@math.berkeley.edu

Scott McPeak
Computer Science Dept.
University of California

Berkeley, CA 94720
smcpeak@acm.org

Abstract

We present an “adaptive multi-start” genetic
algorithm for the Euclidean traveling sales-
man problem that uses a population of tours
locally optimized by the Lin-Kernighan al-
gorithm. An all-parent cross-breeding tech-
nique, chosen to exploit the structure of the
search space, generates better locally opti-
mized tours. Our work generalizes and im-
proves upon the approach of Boese et al. [2].

Experiments show the algorithm is a vast
improvement over simple “multi-start,” i.e.,
repeatedly applying Lin-Kernighan to many
random initial tours. Both for random and
several standard tsplib [5] instances, it is
able to find nearly optimal (or optimal) tours
for problems of several thousand cities in
a few minutes on a Pentium Pro worksta-
tion. We find these results are competitive
both in time and tour length with one of
the most successful TSP algorithms, Iterated
Lin-Kernighan.

1 BACKGROUND

1.1 THE TSP

In the traveling salesman problem (TSP) we are given
n points (or “cities”) c1, . . . , cn and a positive dis-
tance d(ci, cj) for each distinct pair of cities. Our
goal is to find an ordering π, or tour, of the cities
that minimizes the length of the tour, d(cπ(n), cπ(1)) +∑n−1

i=1 d(cπ(i), cπ(i+1)). We will restrict our attention
to the two-dimensional Euclidean TSP, which is the
special case where the cities are points in the plane
and d(ci, cj) is the Euclidean distance from ci to cj .
This optimization problem is NP-hard.

1.2 LOCAL SEARCH ALGORITHMS

Many methods for finding approximate solutions have
been studied; Johnson and McGeoch [3] provide an ex-
cellent survey. Traditional approaches involve using a
construction heuristic to construct an initial tour, then
running a local search algorithm to improve it. For a
long time, the most successful local search method was
the Lin-Kernighan (LK) algorithm [4]. Lin-Kernighan
involves the usual 2-opt and 3-opt moves that swap
two or three edges in the tour, but tries to overcome
the tendency of local search algorithms to find local
minima that are far from the optimal solution by al-
lowing some uphill moves that increase tour length.

These algorithms are generally able to find tours
within a few percent of optimal; finding tours very
close to optimal length, however, is difficult. It-
erated Lin-Kernighan (ILK) is an improvement on
the standard Lin-Kernighan algorithm in which cer-
tain “double-bridge 4-opt” moves (sometimes called
“kicks”) are performed when the LK local search stalls.
(These type of kicks are chosen because they are dif-
ficult for LK to undo.) It has been found to be one
of the most effective algorithms at finding high-quality
solutions, even for large problems [3].

1.3 GENETIC ALGORITHMS

The literature contains many examples of the appli-
cation of genetic algorithms to the TSP. However,
Johnson and McGeoch [3] and others have found tradi-
tional, pure genetic approaches are not seriously com-
petitive with other conventional algorithms. However,
by incorporating local search techniques, genetic ap-
proaches have been improved. Typically, individuals
in the population are taken to be local minima under
a chosen local optimization method, as in the work of
Boese et al. [2] and Merz and Freisleben [6]. A dis-
tinctive part of the algorithm presented in the former

paper is the repeated cross-breeding of the entire pop-
ulation to create a single child. Our work follows in the
same vein, but yields an algorithm with substantially
improved performance.

2 THE ADAPTIVE MULTI-START
APPROACH

2.1 THE BIG VALLEY

In a 1994 paper, Boese et al. [2] proposed a new TSP
approximation algorithm. It is based on the observa-
tion that, in most cases, the locally optimal solutions—
optimized by 2-opt local search in the paper—share
many edges with each other and with the optimal so-
lution. The authors called this observation the “big
valley” hypothesis and supported it with several ex-
perimental results. Their work was restricted to 2-
opt local minima and random problem instances, i.e.,
problems where points are chosen uniformly at random
on a square. The bond distance between two tours is
defined as the number of edges in one tour not coincid-
ing with an edge in the other. The authors proved that
the bond distance is within a factor of two of the 2-opt
distance, which is the least number of 2-opt operations
needed to get from one tour to another.

2.2 ADAPTIVE MULTI-START

How does one exploit the big valley? Boese et al.
present the adaptive multi-start (AMS) algorithm.
First, they create a population of tours by running
2-opt local search on random initial tours. Then they
repeatedly create a “child” tour by adding edges from
the “parent” tours with probability proportional to the
fitness of an edge, where the fitness of an edge is deter-
mined by the length and number of the parent tours
containing the edge. The edges that occur more of-
ten or in shorter tours in the parent population have a
better chance of appearing in the new tour. After the
legal edges in the parent population are exhausted,
the fragments of the partial tour are reconnected at
random to form a complete tour, and 2-opt is run on
the tour. If the child has a shorter tour length than
one of the parents, it replaces the worst tour in the
population.

In this work, we improve on the method of Boese et al.
by (i) choosing different population sizes and num-
bers of generations; (ii) using another fitness func-
tion; (iii) implementing the child generation more ef-
ficiently and effectively; and (iv) using Lin-Kernighan
local optimization. While the algorithm of Boese et al.
performed only somewhat better than 2-opt, the ver-

23080

23100

23120

23140

23160

23180

23200

23220

23240

120 130 140 150 160 170 180

T
ou

r
le

ng
th

Average distance to local minima

(a)

23080

23100

23120

23140

23160

23180

23200

23220

23240

0 50 100 150 200

T
ou

r
le

ng
th

Distance to best local minimum

(b)

Figure 1: For 2000 LK local minima, (a) the average
bond distance to the other local minima, and (b) the
bond distance to the best local minimum, for a random
1000-point instance.

378000

378500

379000

379500

380000

380500

381000

381500

382000

220 240 260 280 300 320 340 360

T
ou

r
le

ng
th

Average distance to local minima

(a)

378000

378500

379000

379500

380000

380500

381000

381500

382000

0 50 100 150 200 250 300 350 400 450

T
ou

r
le

ng
th

Distance to best local minimum

(b)

Figure 2: For 2000 LK local minima, (a) the average
bond distance to the other local minima, and (b) the
bond distance to the best local minimum, for tsplib’s
pr2392 instance.

sion of AMS presented here finds tours of much better
quality—in fact often better than those of the Iterated
Lin-Kernighan algorithm (see §6).

2.3 THE BIG VALLEY HYPOTHESIS FOR
LK TOURS

In our algorithm, we use Lin-Kernighan for local opti-
mization on the tours. We now give some evidence that
the big valley hypothesis still holds for LK-optimized
tours.

For several Euclidean TSPs, we ran the LK algorithm
on 2000 random initial tours and compared the 2000
locally optimal tours to each other and to the best lo-
cally optimal tour. Figures 1 and 2 show the results for
a 1000-point random problem and a 2392-point non-
random problem (from tsplib [5]).

Observe that in each case, the quality of local optima
correlates with the distance between the local optima.
That is, they cluster around the best local optima.
Thus it is plausible that by finding locally optimized
tours that are near many of the optima, we will find
better tours.

The correlation is not as strong between the quality
of local optima and distance to the best of the local

Parent Tour Constructor
(Random, Greedy, NN)

Local Opt
(Lin-Kern or 2-Opt)

Probabil ist ic
Child Builder

Edge Pool

D

E

E

A

B
A

C
B

C

D

D
B

E

B
C

A

Partial Child Tour
C

D

E

B
AChild Complet ion

(Random, NN)

Complete Child Tour
C

D

E

B
A

Local Opt
(Lin-Kern or 2-Opt)

Better than
some

parent?

Y

N

Current Population
C

D

E

B
A

C

D

E

BA
C

D

E

BA

Figure 3: Structure of the algorithm.

optima found. Yet this should not be too discourag-
ing: generally, a number of local optima are very good,
though they may differ in a fair number of edges. (In-
deed, a globally optimal tour might not be unique.)
This explains the lower bulge of points in Figure 1(b),
which represent good tours distant from the best local
optimum.

The plots give credence to the big valley hypothesis
for LK-optimized tours, and suggest that the AMS
approach is compatible with LK-optimized tours.

3 THE ALGORITHM

3.1 GENERAL STRUCTURE

Figure 3 provides a conceptual diagram for our AMS
algorithm. The algorithm is genetic in nature: at every
generation, a randomized cross-breeding operation is
applied to the parent tours to create a child tour that
contains many of the same edges as the parents. This
child tour is subsequently locally optimized and added
to the population, provided the child short enough.

The algorithm operates in two phases. In the first
phase, it generates a set of initial tours using a tour
construction heuristic (such as random, greedy, or
nearest-neighbor) and each of these parent tours is lo-

cally optimized. The resulting tours are the initial
population.

In the second phase, we begin by collecting the union
of all the edges which appear anywhere in the pop-
ulation into an “edge pool,” and calculating a fitness
value for each edge in the pool based on characteristics
of the edge itself and the tours containing that edge.
(Note this differs from traditional genetic approaches,
which generally assign fitness to individuals in the pop-
ulation, not their components.) Next, we repeatedly
choose edges from the pool at random with probabil-
ity proportional to their fitness values and add them
to a child tour we are growing, omitting any edges that
would create an illegal tour, until no more edges may
be added. Since we may exhaust all the edges in the
pool and still be left with an incomplete child tour, we
may also need to add some new edges to connect the
tour fragments. This completion can be accomplished
using an edge-length based heuristic such as nearest-
neighbor or greedy, or with a simple-minded random
selection. Finally, the complete child is passed through
the local optimizer, and compared to the population.
If the new tour is shorter than the longest tour in the
population, the new tour will replace the longest tour.
The new population then becomes the basis for the
subsequent generation. As we will see, the population
eventually reaches a point where no further progress
can be made, and we stop the algorithm (see §5). (One
could generate several children, then incorporate the
good ones into the population, but this does not im-
prove performance.)

The described algorithm has a large number of pa-
rameters that can be adjusted to change its behavior,
such as the choice of tour construction heuristic, the
size of the population, the child completion algorithm,
and the choice of fitness function. These choices are
discussed in §3.3 and §5.

3.2 COMPARISON TO BOESE ET AL.
ALGORITHM

The general idea of our algorithm is similar to that
of the algorithm described by Boese et al. However,
there are some significant differences. For example, the
Boese et al. algorithm spends about half of the time
building the initial population and the other half gen-
erating child paths, while our algorithm, when prop-
erly adjusted, spends less time on the initial popu-
lation and focuses on a larger number of generations
(a ratio of perhaps 1:1000 instead of 1:1). Our al-
gorithm uses a quality-conscious (and in fact faster)
heuristic for child tour completion instead of random
completion. It uses Lin-Kernighan instead of 2-opt

for local optimization, which (not surprisingly) pro-
duces much better results. It also runs local search on
each child path only once, rather than relying on non-
determinism in the local search to provide different op-
timized children. Finally, we use a more sophisticated
fitness function for assigning edge probabilities.

3.3 THE FITNESS FUNCTION

The AMS algorithm uses a fitness function to decide
the probability of picking each edge. The choice of
this fitness function greatly influences the algorithm’s
performance, both in terms of tour quality and run-
ning time. Since there is no single obvious choice, we
studied several possibilities and empirically evaluated
their effectiveness.

We want the fitness of an edge to correlate positively
with factors that contribute to good tours. Possible
factors include edge length, the lengths of the popula-
tion tours that contain the edge, and the edge’s pop-
ularity, or the fraction of parents containing the edge.
Parameters in the function make it possible to strike
a favorable balance among the factors.

The fitness function we found most effective was of the
form

Fit(e) = αQE + (1− α)PQT

for any edge e. QE reflects the relative quality (length)
of e compared to other edges in the pool, QT reflects
the relative quality of the best tour containing the
edge, and P is a scaling factor dependent on the pop-
ularity of the edge. The parameter α, in the range 0
to 1, influences the relative importance of the two
terms.

We define QE to be a linear function of the length of e,
scaled so that the shortest edge in the pool has QE = 1
and the longest has QE = 0. QT is defined similarly:
it is a linear function of the length of the shortest tour
in the population that contains the edge, scaled to the
range 0 to 1. Finally, we let P = eβ(pop(e)−1), where
pop(e) is the popularity of e and the parameter β ≥ 0
controls the importance of popularity.

4 IMPLEMENTATION

4.1 TOOLS

We implemented the algorithm described in §3 in
about 2500 lines of C++ code [7]. The implementation
of the Lin-Kernighan local search algorithm and the
parent tour construction heuristics were taken from
the concorde [1] library of Applegate et al., a freely
available collection of TSP-solving utilities.

4.2 COMPLEXITY

The complexity for our implementation is O(pS +
g(np log np + S)), where n is the number of cities, p
is the population size, g is the number of generations,
and S is the running time for the local search.

The algorithm generates the parents (complexity
O(pS)), collects their edges into a pool, and as-
signs a fitness value (see §3.3) to each edge (taking
O(np)). The probabilistic child builder, which runs in
O(np log np), repeatedly selects edges from the pool at
random with probability directly proportional to their
assigned fitness values, and adds them to the child if
they are legal tour edges (checking this takes constant
time).

In practice, our implementation spends over three-
quarters of its CPU cycles on local searches.

4.3 PARALLELIZING AMS

We successfully parallelized the child generation phase
of the algorithm, so that many children are gener-
ated on different processors concurrently. Because
no communication is needed while the local search is
performed, performance increases nearly linearly with
the number of processors, even when communicating
across a slow network. The parallel version allows large
problems to be solved quickly when a network of work-
stations is available. However, for the sake of useful
performance comparisons, all results discussed below
were gathered from the sequential version of the pro-
gram.

5 BEHAVIOR OF THE
ALGORITHM

5.1 A SAMPLE RUN

Figure 4 shows a typical execution of the algorithm, in
this case on a 1000-point random instance. It shows
how tour lengths and the diversity of the population
change during the run. We define diversity as the
number of distinct edges in the pool, scaled so that
diversity is zero when all the tours in the population
are identical, and diversity is one when all the tours
are completely disjoint. The new children have widely
varying lengths, but the best and worst tours in the
population improve steadily as long as the diversity of
the population is high. Note that whenever the “new
child” line drops below the dotted line indicating the
worst parent length, the new child replaces the worst
parent in the population. After about 1300 genera-
tions, the population “converges”: the best and worst

23100

23150

23200

23250

23300

23350

23400

23450

23500

0 500 1000 1500 2000

to
ur

 le
ng

th

new child
best in population

worst in population

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 500 1000 1500 2000

di
ve

rs
ity

generations

Figure 4: A typical run on a 1000-point random problem: best, worst, and new child optimized tour lengths
(above) and diversity (below). (Population size is 10, α = .05, and β = 1.)

tour lengths coincide, the noise in child generation
drops to near zero, diversity drops to nearly zero, and
the best tour length stops improving.

The correlation between diversity and convergence in-
dicates interesting similarities between AMS and sim-
ulated annealing (SA). The diversity of the population
in AMS acts like temperature in SA; when diversity is
high, the algorithm is exploring many widely separated
regions of the search space. But as diversity drops, the
algorithm “homes in on” the best solution in the region
it has selected. However, while the “cooling schedule”
in SA is user-specified, AMS diversity drops according
to internal factors.

5.2 SELECTION OF PARAMETERS

The parameters, especially population size, influence
the diversity schedule. With only a few parents (less
than 5, say), AMS can find a solution very quickly,
but it is not very near to optimal. With many par-
ents (20 or more), AMS takes quite a bit longer to
reach convergence, but the resulting tour is very good.
This behavior is illustrated in Figure 5. (Note that
in the figure the population of 20 has not converged
in the 2000 generations shown. It ultimately reaches
tour quality slightly better than that of the population
of 10.)

The value of α also influences the performance. In gen-
eral higher values of α make the addition of unpopular
or poorly performing edges more likely, raising diver-
sity and slowing convergence. Picking α slightly larger
than zero, say α ≈ 0.05 seems to work well. Perfor-
mance is not as sensitive to β; values near 1 work well.

We find the choice of construction heuristic and child
completion heuristic have a moderate effect on the al-
gorithm. Generally, random initial tours work better
than nearest neighbor or greedy, and nearest-neighbor
tour completion performs better than random tour
completion. This is not surprising, since we want as
much diversity as possible at the start, and want each
child tour to be short. (Boese et al. claim that the
choice of child completion heuristic has little effect.
This may be a feature of their 2-opt local optimiza-
tion, or it may be that their experiments involved too
few generations to show the difference.)

6 PERFORMANCE AND
COMPARISONS

All running times given in this section were measured
on 200 MHz Pentium Pro workstations running the So-
laris operating system.

23100

23150

23200

23250

23300

23350

23400

0 500 1000 1500 2000

to
ur

 le
ng

th

generations

population 3

population 5

population 10

population 20

Figure 5: Best population tour lengths for a 1000-point
random problem (average of 10 runs) for various sizes
of the population.

6.1 DOES BREEDING HELP?

We can first check if the “adaptive” breeding of good
tours is worthwhile by comparing to “unadaptive”
multi-start, where instead of breeding to get new tours,
we repeatedly pick random tours, then apply the same
local optimization. Typical results are shown in Fig-
ure 6. Clearly, the adaptive method is much faster at
finding good tours than repeated LK.

6.2 COMPARISONS TO OTHER
ALGORITHMS

The 2-opt-based Boese et al. algorithm also performed
better than its unadaptive counterpart. However, be-
cause 2-opt itself is inferior to Lin-Kernighan local
optimization [3], one application of LK generally sur-
passes tour qualities achieved by hundreds of 2-opted
child generations, at least in the case of the small prob-
lems discussed in their article (100 cities placed at
random). Performance data is not supplied for larger
problems, but it is reasonable to assume LK would
continue to out-perform an algorithm that relies upon
2-opt. For a more meaningful comparison, we turn to
an algorithm that also makes use of LK.

The concorde library provides an implementation of
the Iterated Lin-Kernighan (ILK) algorithm. As this
algorithm is one of the most successful at finding high-
quality tours [3], it is an obvious candidate for compar-
ison with AMS. Moreover, since AMS uses precisely
the same LK local search implementation as ILK, run-
time comparisons can be performed easily and fairly.

Our experiments focused on problems of several thou-
sand cities. At these sizes, ILK runs quickly, apply-

ing thousands of “kicks” in a few minutes. However,
like LK itself, it eventually gets trapped near a local
minimum from which even the kicks find no escape.
Thus, for best-quality results, it should be run multi-
ple times with random starting tours. Figure 7 shows
single runs of ILK on a 1000-point random problem,
where the times indicate the amount of computation
required before the algorithm failed to improve further.
Also, to give an indication of the difficulty of finding
near-optimal tours, the best results of a few repeated
ILK runs—sometimes taking tens or hundreds of times
longer—are shown.

For comparison, a sample of runs from AMS is also
shown, in this case for a population size of 10. While
AMS is clearly much slower than a single run of ILK,
it seems to reliably find better tours: many single ILK
runs are never able to do as well as a typical single
AMS run. If we take into account the time needed
to repeat ILK until a high-quality tour is found, we
see AMS can be significantly faster. Generally, we
see AMS is much more stable in its performance, a
property we would expect from its population-based
approach. A larger population, say of size 20, both
improves tour quality and reliability, at the expense of
a factor of 5–10 in running time.

In preliminary tests on problems an order of magni-
tude larger, AMS performance is poorer than ILK. We
believe this is due to the global nature of the LK opti-
mization required by each AMS generation. However,
with such a computationally intensive problem, one
may be able to use ILK itself as the local search in
AMS (see §7.1).

6.3 NON-RANDOM PROBLEMS

The previous results are for randomly chosen points.
The tsplib archive [5] has many more interesting
point configurations, taken from applications ranging
from geography to printed-circuit board layouts. For
many problems, provably optimal solutions (found by
branch and bound methods, for example) are known.
Table 1 lists the performance of AMS on six differently
structured problems, for various population sizes.

As a comparison, ILK was run repeatedly, each time
for enough “kicks” (8000–10 000) to obtain a stable
result, until somewhat more than the amount of CPU
time taken by the corresponding AMS run was ex-
pended.

The average lengths, best lengths, and times are deter-
mined from ten trials for each problem. We see that
for each problem the best AMS result is at least as
short as the best ILK result, and often significantly

23100

23150

23200

23250

23300

23350

23400

23450

23500

23550

23600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

to
ur

 le
ng

th

generations

LK with AMS
LK on random tours

unadaptive best
population best

population worst

Figure 6: A typical run on a 1000-point random problem, and an “unadaptive” repetitive LK run.

23090

23100

23110

23120

23130

23140

23150

23160

23170

10 100 1000 10000

to
ur

 le
ng

th

time (s)

ILK
ILK repeated

AMS

Figure 7: Quality of ILK and AMS tours versus CPU time (on logarithmic scale) to find them.

(considering the closeness to optimality) shorter. In
all but one case, AMS also performs better on aver-
age, particularly for the largest three problems.

7 FUTURE WORK

7.1 IMPROVING THE ALGORITHM

The number of possible variations on AMS is dizzying.
Not only can parameters such as α and population size
be varied, but changes could be made in the fitness
function, the local search, or the scheme for picking
edges and completing children; it would be foolish to
think the experiments described more than scratch the
surface of what is possible with an algorithm of this
type.

An interesting variation is to use a more powerful local

search, such as ILK. This is of course quite expensive
and only of interest when tours very close to optimal
are needed. Preliminary results indicate it to be more
effective than simple repeated ILK from random start-
ing tours (a typical method when using ILK). We are
currently exploring this approach.

Altering the structure of the population may be help-
ful. For example, one could increase the size of the
population as diversity lowers. Dynamically changing
population size may allow more direct control of the
algorithm and perhaps yield better results. Or, one
could use multiple smaller populations simultaneously.
This could improve speed since small populations find
better tours faster. The good descendents of these
small populations could then be merged into a new
population, and breeding could continue.

Table 1: AMS and ILK performance on tsplib problems.
AMS ILK

name optimal pop. avg. best time avg. best time
(size) length size length length (excess) (min) length length (excess) (min)

gr666a 294358 20 294478 294358 (0%) 12 294411 294358 (0%) 17
u1060 224094 20 224131 224115 (0.009%) 62 224144 224121 (0.012%) 67
pcb1173 56892 15 56894 56892 (0%) 5 56923 56892 (0%) 7
d2103 80450 15 80534 80455 (0.006%) 16 80643 80563 (0.14%) 17
pr2392 378032 15 378064 378033 (0.0003%) 14 378446 378107 (0.020%) 17
rl5934 556045 10 556800 556403 (0.07%) 146 557345 556451 (0.07%) 180

aThis instance uses a non-Euclidean metric.

7.2 EXTENSION TO OTHER PROBLEMS

While this paper has focused on the Euclidean TSP,
the AMS algorithm could certainly be applied to the
general (symmetric) TSP problem. Since AMS is
based on the Lin-Kernighan local search, which is quite
robust, it is plausible that the adaptive multi-start ap-
proach we have outlined could make headway on other
variations of the traveling salesman problem.

8 CONCLUSION

Adaptive multi-start is a promising approach to find-
ing high-quality solutions to the Euclidean TSP and
perhaps more general TSPs. It combines good quali-
ties of local search and genetic algorithms, while avoid-
ing many of the pitfalls of each. The algorithm cannot
easily get stalled at a poor local minimum, as local
searches can, because an entire population of tours
is maintained. New tours are constructed through
a heuristic that exploits structural properties of the
search space. Finally, the richness of options in design-
ing such an algorithm means improvements are likely.

Acknowledgments

We would like to thank Alistair Sinclair for his help-
ful comments. The authors’ work was supported by a
Sloan Fellowship, a Computational Sciences Graduate
Fellowship from the DOE Office of Scientific Comput-
ing, and the NSF Graduate Fellowship program. The
authors also wish to thank the traveling salesman.

References

[1] D. Applegate, R. Bixby, V. Chvátal, and
W. Cook, concorde, a computer code for
the traveling salesman problem (prelimi-
nary version, August 27, 1997), available at
http://www.caam.rice.edu/˜keck/concorde.html.

[2] K. D. Boese, A. B. Kahng, and S. Muddu, “A
new adaptive multi-start technique for combina-
torial global optimizations,” Operations Research
Letters 16 (1994), pp. 101–113.

[3] D. S. Johnson and L. A. McGeoch, “The trav-
eling salesman problem: a case study,” pp. 215–
310 in Local Search in Combinatorial Optimiza-
tion, E. Aarts and J. K. Lenstra, eds., John Wiley,
New York, 1997.

[4] S. Lin and B. Kernighan, “An effective heuris-
tic algorithm for the traveling salesman problem,”
Operations Research 21 (1973) pp. 498–516.

[5] G. Reinelt, “tsplib—A travelling salesman
problem library,” ORSA Journal on Comput-
ing 3 (4) (1991), pp. 376–384. Available at
http://www.iwr.uni-heidelberg.de/iwr/comopt
/software/TSPLIB95/.

[6] P. Merz and B. Freisleben, “Genetic local search
for the TSP: new results,” Proceedings of 1997
IEEE International Conference on Evolutionary
Computation (Indianapolis, IN, USA, 13–16 April
1997), pp. 159–64.

[7] The source code for AMS is available from
http://www.cs.berkeley.edu/˜bonachea/tsp/.

