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Abstract. This paper describes the C Intermediate Language: a high-
level representation along with a set of tools that permit easy analysis
and source-to-source transformation of C programs.
Compared to C, CIL has fewer constructs. It breaks down certain com-
plicated constructs of C into simpler ones, and thus it works at a lower
level than abstract-syntax trees. But CIL is also more high-level than
typical intermediate languages (e.g., three-address code) designed for
compilation. As a result, what we have is a representation that makes it
easy to analyze and manipulate C programs, and emit them in a form
that resembles the original source. Moreover, it comes with a front-end
that translates to CIL not only ANSI C programs but also those using
Microsoft C or GNU C extensions.
We describe the structure of CIL with a focus on how it disambiguates
those features of C that we found to be most confusing for program anal-
ysis and transformation. We also describe a whole-program merger based
on structural type equality, allowing a complete project to be viewed as a
single compilation unit. As a representative application of CIL, we show
a transformation aimed at making code immune to stack-smashing at-
tacks. We are currently using CIL as part of a system that analyzes and
instruments C programs with run-time checks to ensure type safety. CIL
has served us very well in this project, and we believe it can usefully be
applied in other situations as well.

1 Introduction

The C programming language is well-known for its flexibility in dealing with
low-level constructs. Unfortunately, it is also well-known for being difficult to
understand and analyze, both by humans and by automated tools. When we
embarked on our project to analyze and instrument C programs in order to
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bring out the existing safe usage of pointers or to enforce it when it was not
apparent, we examined a number of existing C intermediate languages and front
ends before deciding to create our own. None of the available toolkits met all
of our requirements. Some (e.g., [3,9]) were too high-level to support detailed
analyses; some were designed to be fed to a compiler and were thus too low level,
and some (e.g., SUIF [14,8]) failed to handle GCC extensions, which prevented
them from working on software that use these extensions, such as Linux device
drivers and kernels.

1 struct { int *fld; } *str1;

2 struct { int fld[5]; } str2[4];

3 str1[1].fld[2];

4 str2[1].fld[2];

Fig. 1. A short C program fragment highlighting ambiguous syntax.

Extracting the precise meaning of a C program often requires additional
processing of the abstract syntax. For example, consider lines 3 and 4 in Figure 1.
They have the same syntax but different meanings: line 3 involves three memory
references while line 4 involves only one. While low-level representations do not
have such ambiguities, they typically lose structural information about types,
loops and other high-level constructs. In addition, it is difficult to print out such
a low-level representation in a way that is faithful to the original source. Our
goal has been to find a compromise between the two approaches.

The applications we are targeting are systems that want to carry out anal-
yses and source-to-source transformations on C programs. A good intermediate
language for such a task should be simple to analyze, close to the source and
able to handle real-world code. This paper describes CIL, a highly-structured
“clean” subset of C that meets these requirements.

CIL features a reduced number of syntactic and conceptual forms; for ex-
ample, all looping constructs are reduced to a single form, all function bodies
are given explicit return statements and syntactic sugar like “->” is eliminated.
CIL also separates type declarations from code, makes type promotions explicit
and flattens scopes (with alpha renaming) within function bodies. These simpli-
fications reduce the number of cases that must be considered when manipulating
a C program, making it more amenable to analysis and transformation. Many of
these steps are carried out at some stage by most C compilers, but CIL makes
analysis easier by exposing more structure in the abstract syntax.

CIL’s conceptual design tries to stay close to C, so that conclusions about
a CIL program can be mapped back to statements about the source program.
Additionally, translating from CIL to C is fairly easy, including reconstruction
of common C syntactic idioms.

Finally, a key requirement for CIL is the ability to parse and represent the
variety of constructs which occur in real-world systems code, such as compiler-
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specific extensions and inline assembly. CIL supports all GCC and MSVC ex-
tensions except for nested functions, and it can handle the entire Linux kernel.

The rest of this paper describes our handling of C features and CIL applica-
tions. In Section 2 we describe the syntax, typing and semantics for our language
of lvalues. We present expressions and instructions in Section 3 and control-flow
information in Section 4. Section 5 details our treatment of types. We discuss
source-level attributes in Section 6. Having described the features of CIL we
move on to using it for analysis in Section 7 and applying it to existing multi-file
programs in Section 8. In Section 9 we discuss related work and we conclude in
Section 10.

2 Handling of Lvalues

An lvalue is an expression referring to a region of storage [7]. Only an lvalue
can appear on the left-hand side of an assignment. Understanding lvalues in C
requires more than a simple abstract syntax tree. As shown in Figure 1, the
C fragment str1[1].fld[2] may involve one, two or three memory references
depending on the types involved. If str1 and fld are both arrays, the fragment
actually refers to an offset within a single contiguous object named str1. If
str1 is an array and fld is a pointer, the value at str[1].fld must be loaded
and then an offset from that value must be referenced. The case when str1
is a pointer and fld is an array is similar. Finally, if both are pointers, str1,
str1[1].fld and str1[1].fld[2] must all be referenced. As a result, program
analyses that care about these differences will find it hard to analyze lvalues in
abstract-syntax tree form.

lvalue ::= 〈lbase, loffset〉
lbase ::= Var(variable) | Mem(exp)
loffset ::= NoOffset | Field(field, loffset) | Index(exp, loffset)

Fig. 2. The abstract syntax of CIL lvalues.

As shown in Figure 2, in CIL an lvalue is expressed as a pair of a base plus an
offset. The base address can be either the starting address for the storage for a
variable (local or global) or any pointer expression. We distinguish the two cases
so that we can tell quickly whether we are accessing a component of a variable or
a memory region through a pointer. An offset in the variable or memory region
denoted by the base consists of a sequence of field or index designators.

The meaning of an lvalue is a memory address along with the type of the
object stored there. Figure 3 shows the definitions of two judgments that define
the meaning. The meaning of a variable base is the address of the variable and
its type. The judgment Γ ` lbase ⇓ (a, τ) says that the lvalue base lbase refers
to an object of type τ at address a. Lvalue offsets are treated as functions
that shift address-type pairs to new address-type pairs within the same object.
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Γ (x) = τ

Γ ` Var(x) ⇓ (&x, τ)

Γ ` e : Ptr(τ)

Γ ` Mem(e) ⇓ (e, τ)

Γ ` (a, τ)@NoOffset ⇓ (a, τ)

τ1 = Struct(f : τf , ...) Γ ` (a1 + OffsetOf (f, τ1), τf )@off ⇓ (a2, τ2)

Γ ` (a1, τ1)@Field(f, off ) ⇓ (a2, τ2)

τ1 = Array(τ) Γ ` (a1 + e ∗ SizeOf (τ), τ)@off ⇓ (a2, τ2)

Γ ` (a1, τ1)@Index(e, off ) ⇓ (a2, τ2)

Fig. 3. Typing and evaluation rules for CIL lvalues

The judgment Γ ` (a1, τ1)@o ⇓ (a2, τ2) means that the lvalue offset o, when
applied an lvalue denoting (a1, τ1), yields an lvalue denoting an object of type
τ2 at address a2. In this latter judgment a2 is an address within the range
[a1, a1 + sizeof(τ1)).

Considering again the example from Figure 1, the two lvalues shown there
have the following CIL representations in which it is obvious when we reference
a variable or a pointer indirection.

str1[1].fld[2] = 〈Mem(2 + Lvalue〈Mem(1 + Lvalue〈Var(str1),NoOffset〉),
Field(fld,NoOffset)〉)〉

str2[1].fld[2] = 〈Var(str2), Index(1, Index(2,NoOffset))〉
This interpretation of lvalues upholds standard C equivalences like “x ==

*&x” and “(*(&a.f)).g == a.f.g”, and makes tasks like instrumenting every
memory access in the program much easier. As in other intermediate represen-
tations, all occurrences of the same variable share a variable declaration. This
makes it easy to change variable properties (like the variable name or type) and
allows for the use of pointer equality checks when comparing variables.

3 Expressions and Instructions

CIL syntax has three basic concepts: expressions, instructions, and statements.
Expressions represent functional computation, without side-effects or control
flow. Instructions express side effects, including function calls, but have no local
(intraprocedural) control flow. Statements capture local control flow.

The abstract syntax for CIL expressions is given in Figure 4. Constants are
fully typed and their original textual representation is maintained in addition to
their value. SizeOf and AlignOf expressions are preserved both because comput-
ing them is dependent on compiler and compilation options, and also because a
transformation may wish to change types. Casts are inserted explicitly to make
the program conform to our type system, which has no implicit coercion rules.

The StartOf expression has no explicit C syntax but is used to represent the
implicit coercion from an array to the address of its first element. Without such
a rule a typing judgment for *exp must do a case analysis based on the type of
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exp, leading to two distinct typing rules for *exp. The addition of StartOf allows
for syntax-directed type checking, by making the coercion explicit in the source.
The StartOf operator is not printed, and has the following type rule (it is the
only way to convert an array to a pointer to the first element):

lvalue ⇓ (a,Array(τ))

StartOf(lvalue) ⇓ (a,Ptr(τ))

The other C expressions (such as the “? :” operator or expressions that can
have side-effects) are converted to CIL instructions or statements, which are
discussed next.

exp ::= Constant(const) | Lvalue(lvalue) | SizeOfExp(exp)
| SizeOfType(type) | AlignOfExp(exp) | AlignOfType(type)
| UnOp(unop, exp) | BinOp(binop, exp, exp) | Cast(type, exp)
| AddressOf(lvalue) | StartOf(lvalue)

instr ::= Set(lvalue, exp)
| Call(lvalue option, exp, exp list)
| Asm(raw strings, lvalue list, exp list)

Fig. 4. The syntax of CIL expressions and instructions.

Each instruction contains a single assignment or function call. The Set in-
struction updates the value of an lvalue. The Call instruction has an optional
lvalue into which the return value of the function is stored. The function com-
ponent of the Call instruction must be of function type; CIL removes redundant
& and * operators applied to functions or function pointers. The arguments to
functions are expressions (without side-effects or embedded control flow). Fi-
nally, the Asm instruction is used to capture the common occurrence of inline
assembly in systems programs. CIL understands Microsoft- and GNU-style as-
sembly directives and reports the inputs (as a list of expressions) and the outputs
(as a list of lvalues) of the assembly block. Other information (volatility, raw as-
sembly template strings) is stored, but not interpreted. CIL also stores location
information with all statements and can take advantage of this information to
insert #line directives when emitting output. This allows error messages in a
heavily-transformed program to line up with the correct source line in the orig-
inal program.

4 Integrating a CFG into the Intermediate Language

On top of the lvalues, expressions and instructions, CIL provides both high-
level program structure and low-level control-flow information. The program
structure is captured by a recursive structure of statements, with every statement
annotated with successor and predecessor control-flow information. This single
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program representation can be used with routines that require an AST (e.g.,
type-based analyses or pretty-printers), as well as with routines that require a
CFG (e.g., dataflow analyses).

stmt ::= Instr(instr list) | Return(exp option)
| Goto(stmt) | Break
| Continue | If(exp, stmt list, stmt list)
| Switch(exp, stmt list, stmt list) | Loop(stmt list)

Fig. 5. The syntax of CIL statements.

Figure 5 shows the syntax of CIL statements. In addition to the information
we show, each statement also contains labels, source location information and a
list of successor and predecessor statements. Assignments and function calls are
grouped under Instr and do not have any control flow embedded within them.
CIL can resolve Break and Continue to Gotos if desired, but leaving them as they
are makes code-motion transformations (e.g., loop unrolling) easier. A Return
statement optionally records the return value. Every function in CIL has at
least one Return statement. An If statement records the condition, which is an
expression, together with the two branches, which are lists of statements. CIL
has only a loop-forever looping construct and we always use a Break statement
to exit from such a loop. In many cases the pretty printer is able to print out
a nicer-looking while loop. Notice that Figure 5 does not have any syntax for
case, which is used in switch statements. The reason is we implement case as an
optional label that can be associated with any statement. A switch statement
then consists of an expression, a list of statements which represent the entire
body of the switch (with the case labels indicating the starting point of the
various cases). To provide faster access to the individual cases, we also store the
starting points of the cases as a separate list in the switch statement.

5 Handling of Types

Figure 6 describes the representation of C types in CIL. The Named type arises
from uses of type names defined with typedef. The other types have their usual
counterparts in C.

The notable features of CIL with respect to type handling have to do with
composite types, i.e. structs and unions. C programs can declare named and
anonymous composite types at the file scope or in local scopes. This makes it
hard to move expressions that involve locally defined types and also forces one
to scan the entire AST to find declarations of such types. To simplify these tasks
CIL moves all type declarations to the beginning of the program and gives them
global scope. All anonymous composite types are given unique names in CIL and
every composite types has its own declaration at the top-level. All references to a
composite type share the same instance of the compInfo structure, which makes
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type ::= Void | Int(intKind) | Float(floatKind) | Ptr(type)
| Array(type, exp) | Fun(type, variable list) | Enum(enumInfo)
| Named(string, type) | Struct(compInfo) | Union(compInfo)

enumInfo ::= (string, item list)
compInfo ::= (string, field list)

Fig. 6. The abstract syntax of CIL types

it easy to change the definition of a composite type and also provides a common
place to watch for recursive type definitions (all such definitions must involve at
least one compInfo).

As far as types are concerned, CIL is similar to SUIF except that SUIF
eliminates all user-defined typedefs and introduces extraneous ones, while CIL
is careful to maintain the typedef structure present in the source.

6 Handling of Attributes

It is often useful to have a mechanism for the programmer to communicate
additional information to the program analysis. We decided to use and extend
for this purpose the GNU C notation for pragmas and attributes. Pragmas can
appear only at top-level while attributes can be associated with identifiers and
with their types. The advantage of this method is that gcc will still be able to
process the annotated file (since it ignores attributes and pragmas that it does
not recognize).

In GNU C a declaration can contain a number of attributes of the form
attribute ((a)) where a is the attribute. For example, here is the prototype

for the printk function found in the Linux kernel:

int printk(const char *fmt, ...)
__attribute__ ((format (printf, 1, 2)));

The attribute above is associated with the name being declared, and it in-
dicates that printk is a printf-like function, whose first argument is a format
string, and arguments starting from the second are to be matched with the for-
mat specifiers. One difficulty in using the GNU C notation for attributes is the
apparent lack of a formal specification for attribute placement and attribute
association with types and identifiers. We have worked out a specification that
seems to extend both that of GNU C and the placement of type qualifiers in
ANSI C [6].

Attributes and pragmas can use the sub-language of C expressions excluding
the comma expression and side-effecting expressions but including a constructed
attribute such as the format attribute in the example above.

The following is the syntax of C declarations that our front-end supports:
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declaration ::= base type attributesopt declarator attributesopt initopt

declarator ::= identifier
| declarator [ expopt ]
| ∗ attributesopt declarator
| declarator ( parametersopt )
| ( attributesopt declarator )

The attributes that appear at the end of the declaration are associated with
the declared identifier. All other attributes are associated with types. In partic-
ular, attributes appearing after a base type are associated with that type, those
appearing after the pointer type constructor * are associated with the pointer
type. Finally, the attributes appearing before the declarator in a parenthesized
declarator are associated with the type of the declarator.

For example in the declaration below we declare an array a of 8 pointers to
functions with no arguments and returning pointers to integers:

int A1 * A2 (A3 * (A4 a)[8])(void) A5;

The attribute A1 belongs to the type int and A2 to the pointer type int A1 *.
The attribute A3 belongs to the function type and A4 to the array type (the type
of a). The attribute A5 applies to the declared name a.

The gcc compiler accepts most of this attribute language but does not ac-
cept all of it in all contexts in which declarations occur. For example the name
attributes are accepted in function prototypes but not in function definitions.
This suggests that the placement of attributes has not been carefully designed
in gcc but rather added in an ad-hoc manner.

7 Using CIL for Analyses and Source-to-Source
Transformations

This section describes two concrete uses of CIL. The first is a small example that
demonstrates the ease with which CIL can be used to encode simple program
transformations. The second shows how CIL can be used to support serious
program analysis and transformation tasks.

7.1 Preventing Buffer Overruns

To demonstrate the use of CIL for source-to-source transformations we present
the CIL encoding of a refinement for the StackGuard [4] buffer overrun defense.
StackGuard is a gcc patch that places a special “canary” word next to the
return address on the stack and checks the validity of the canary word before
returning from a function. It is likely that any buffer overrun that rewrites the
return address will also modify the canary and thus be detected. As presented,
however, the algorithm still has a slight chance of failure (e.g., if the attacker
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1 exception NeedsGuarding (* should we guard this function? *)

2

3 class containsArray = object (* does this type contain an array? *)

4 inherit nopCilVisitor (* only visit types *)

5 method vtype t = match t with (* inspect the type *)

6 TArray -> raise NeedsGuarding (* found an array, guard it *)

7 TPtr -> SkipChildren (* do not follow pointers *)

8 | (* not array *) -> DoChildren (* no array yet, keep looking *)

9 end
10

11 class sgFixupReturn restore ra stmt = object (* rewrite all returns *)

12 inherit nopCilVisitor (* only look for returns *)

13 method vstmt s = match s.skind with (* check each statement *)

14 Return -> let new block = mkBlock (* restore the ra *)

15 [restore ra stmt ; s] in ChangeTo(mkStmt new block)

16 | (* not Return *) -> DoChildren (* descend in other statements *)

17 end
18

19 class sgAnalyzeVisitor f get and push ra restore ra = object
20 inherit nopCilVisitor (* consider each function *)

21 method vfunc fundec = (* do we need to guard this one? *)

22 try (* raise an exception if we need to guard it *)

23 List.iter (fun vi -> (* inspect each local variable *)

24 visitCilType (new containsArray) vi.vtype ; (* find arrays *)

25 ) fundec.slocals ;

26 SkipChildren (* no local arrays found, return *)

27 with NeedsGuarding -> (* local arrays present, guard this *)

28 fundec.sbody.bstmts <- get and push ra :: fundec.sbody.bstmts ;

29 let modify = new sgFixupReturn restore ra in
30 fundec.sbody <- visitCilBlock modify fundec.sbody ;

31 ChangeTo(fundec) (* now this function saves the *)

32 end (* return address on entry and restores it on exit *)

33

34 let stackguard (f : file) = (* apply the transformation *)

35 let make stmt fundec = mkStmt (Instr

36 [Call(None, Lval(Var(fundec.svar),NoOffset), [], locUnknown)]) in
37 (* get and push ra and restore ra are external functions *)

38 (* build up CIL statements that call those functions *)

39 let get and push ra = make stmt (emptyFunction "get and push ra") in
40 let restore ra = make stmt (emptyFunction "restore ra") in
41 visitCilFile (new sgAnalyzeVisitor get and push ra restore ra) f

Fig. 7. Complete OCaml source for a refined StackGuard transformation using
CIL.
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guesses the canary value) and incurs overhead even for functions that do not
have local array variables.

Figure 7 shows a refined implementation of StackGuard. This transformation
pushes the current return address on a private stack when a function is entered
(line 28) and pops the saved value before returning (line 15). We assume that
there are two external functions get and push ra and restore ra for this pur-
pose. Only functions with local variables that contain arrays are modified (the
code in lines 3–9 implements the check). This transformation is simplified by
the fact that all CIL functions have explicit returns (checked for on line 14).
The code makes use of CIL library routines (like visitors). After applying this
transformation, all that remains is to provide (at link-time) the implementation
for the functions that save and restore the return address. This transformation
would be significantly more complicated when performed on an AST. In fact the
transformation would have to perform first some of the elaboration that CIL
performs.

7.2 Ensuring Memory Safety of C Programs

CCured [12] is a system that combines type inference and run-time checking to
make existing C programs memory-safe. It carries out a whole-program anal-
ysis of the structure and use of the types in the program. It uses the results
of the analysis to change the type definitions and memory accesses in the pro-
gram. When the safety of a memory reference cannot be statically verified, an
appropriate run-time check is inserted.

The analysis involves iterating over all the types in the program and com-
paring those that are involved in casts using a form of structural equality. CIL’s
simpler type language, in which recursion is limited to composite types, makes
this easier. As a result of this analysis, some pointers are transformed into multi-
word structures that carry extra run-time information (for example array-bounds
information). Memory reads and writes involving such pointers are instrumented
to contain run-time checks. These transformations are quite extensive and require
detailed modifications of types, lvalues, variables and declarations. Without the
clear disambiguation of these features provided by CIL, it would be difficult to
determine which syntactic constructs represent accesses to memory and how to
change them.

The transformed program is available for user inspection and compiler con-
sumption. CIL’s high-level structural information means that the resulting out-
put is quite faithful to the original source, allowing the two to be compared more
easily than is possible with conventional intermediate representations. CCured
makes use of the whole-program merger, described in Section 8, to handle entire
software projects. It also uses attributes, described in Section 6, to communicate
detailed information about pointer structure.
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8 A Whole-Program Merger

We have described so far an intermediate language that makes both program
analysis and source-to-source transformation easy. However, many analyses are
most effective when applied to the whole program. Therefore we designed and
implemented a tool that merges all of a program’s compilation units into a single
compilation unit, with proper renaming to preserve semantics.

We designed the merger application to impersonate a compiler (it works
with both the GNU C and Microsoft Visual C compilers) and to keep track of
all the files that are compiled to build the whole program, along with the specific
compiler options that were used for each file. When the compiler is invoked for
compilation only (no linking) our tool creates the expected object file but stores
in it only the preprocessed source file. The actual compilation is delayed until link
time. When the compiler is invoked to link the program, it learns the names of
all the object files that constitute the project. All of the associated preprocessed
source files can then be loaded and merged. This setup has the benefit that it
can be used with make-based projects by simply changing of the name of the
invoked compiler and linker.

The actual merging of compilation units turned out to be surprisingly tricky.
First, file-scope identifiers must be renamed properly to avoid clashes with glob-
als and with similar identifiers in different files. In C these are the identifiers
of variables and functions declared static, the names of types introduced with
typedef, and the tags of union, structure and enumeration types. Unfortunately
this is not sufficient because file-scope type identifiers declared in header files
will result in multiple copies with different names at each inclusion point. Since
C uses name equivalence for types, such copies will no longer be compatible,
leading to numerous type errors in the merged program. As a result we need
to do a more careful renaming of file-scope identifiers. To illustrate the problem
consider the two file fragments below. For clarity, we add a “2” suffix to the
file-scope names from the second file; in reality the names might be identical in
the two files, especially if they originate from the same header file.

File 1:
struct list { int data; struct list * next; };
extern struct list *head;
struct tree { struct stuff *data; struct tree *l, *r;};
struct stuff { int elem; };
...

File 2:
struct list2 { int data; struct list2 * next; };
extern struct list2 *head;
struct tree2 { struct stuff2 *data; struct tree2 *l, *r;};
struct stuff2 { int start; int elem; };

Note that the tags list and list2 could use the same name. In fact they
must use the same name: if we give them different names then the merged pro-
gram will have conflicting declarations of the global head. Because of the extra
start field in stuff2, however, the tags stuff and tree must have names dif-
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ferent from stuff2 and tree2 respectively. In this case if we fail to rename the
tree tag then the program will misbehave in a very strange way. Such situa-
tions do actually occur in practice (e.g. vortex and gcc among the SPECINT95
benchmarks [13]). Such renaming errors can be very hard to find in a large pro-
gram. This motivated us to try to describe precisely the problem and the merging
algorithm involved in such a way that we can argue that we do not change the
behavior of the program.

Our naming problem arises from the fact that C uses name equivalence for
types yet different compilation units are free to use different names even for types
that are intended to interoperate with other units. In essence this means that
the linked program cares only about structural type equivalence. Thus when we
try to merge different modules together we have to go beyond name equivalence
and use structural type equivalence. A similar problem occurs in distributed
systems via remote-procedure call or remote storage where different components
might use different type names for types that are structurally equivalent and thus
compatible [11]. This is in fact a common argument in favor of using structural
type equivalence [1,2].

Our merging algorithm makes one pass over all the compilation units, incre-
mentally accumulating a merged program. For each file there are two merging
phases. In the first phase we merge the types and tags (since they do not depend
on variable names). Then in the second stage we rewrite the variable declara-
tions and function bodies. In order to merge the types we first expand all of the
typedef definitions. This is possible because in C the body of a typedef cannot
refer to the name being defined or to type names not already defined. This leaves
us with a set of tag definitions, which can be recursive as shown above. Without
loss of generality we can model the tag definitions as follows:

Tag definition d ::= struct t {T1;T2}
Type T ::= Int | Ptr(struct t)

Note that the constructor is always applied to a tag. The case when a pointer
or array constructor would be applied to a base type is modeled as a base type
and the case when the constructor would be applied to another constructed type
is treated itself as a constructor application.

Given two sets of tag definitions, one from the already merged program M and
one from the file being merged F, we must find which of the latter set of tags
can share names with already defined tags. For the language of tag definitions
considered above this is precisely structural type equivalence for recursive types.
For each pair of tags struct t {T1;T2} from M and struct t′ {T ′

1;T
′
2} from

F we scan the bodies of the definitions and we find either that they always
match, or that they cannot possibly match under any renaming, or that they
match provided some other tags are renamed to the same name. Notice that we
consider only renaming of tags with other tags. Thus exactly one of the following
two kinds of constraints will be generated for each pair of tag definitions (the
second kind of constraint can have zero, one or two equalities on the right of the
equivalence):
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t 6= t′

t = t′ ⇐⇒ t1 = t′1 ∧ t2 = t′2

Once we decide on the names for the tags in a file we process the variable
and function definitions. Among variable declarations we can share only static
and inline function definitions. We also remove duplicate global function proto-
types and extern variable declarations. The whole implementation of the merger
algorithm is about 600 lines of OCaml code.

We have tried the merger on various programs. The largest were those from
the SPECINT95 and SPECINT00 benchmark suites. We have found it to work
reasonably fast, with the biggest cost being that of saving the preprocessed
source files instead of the object files. For example, to merge the sources of the
gcc compiler on a machine using an Intel Pentium 400MHz, it took 90 seconds to
preprocess and save all of the sources, then 9 seconds to parse the preprocessed
sources with another 9 seconds to merge them. gcc consists of 116 source and
header files, totaling about 100,000 lines. The result of preprocessing them has
two million tokens while the result of the merging is a file with only 600,000
tokens (two-thirds of all tokens are shared between modules). We have found
similar results for other programs.

As side benefits from using the merger we have observed that both the gcc
and the Microsoft C compiler parse faster and sometimes produce slightly faster
executables from the merged files, supposedly due to increased ability to optimize
the program. However, the increased opportunity for inlining can also make the
optimization phase substantially slower when full optimization is turned on.

9 Related Work

A variety of intermediate languages have been developed for use by compilers.
Most of them are too low-level to extract recognizable source after transforma-
tion. Some intermediate representations have been designed specifically to aid
high-level analyses, but they do not do sufficient elaboration of the source (as
CIL does for lvalues, for example) to enable detailed and trouble-free analysis
or transformation.

Microsoft’s AST Toolkit [3] supports all of ANSI C and C++, along with
Microsoft’s extensions, but it does not support GNU extensions. It is tightly
integrated with the MSVC compiler, works on any program the compiler works
on, and offers hooks into various compilation stages. Its high-level program rep-
resentation is harder to use in source-to-source transformations. For example, it
does not provide expressions without side-effects as CIL does.

Ckit [9] is a C front end written in Standard ML. It uses abstract syntax
trees and does not come with built-in support for control flow graphs. Although
it does full ANSI C type checking, it does not annotate the code with explicit
casts and type promotions.

Edison Design Group’s front end [5] features a high quality parser for the
full ANSI C and C++ languages. Its emphasis is on thorough syntax analysis
and error checking. It uses a high-level intermediate language, and it leaves the
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task of elucidating complicated C constructs to an appropriate back end. It also
works on one source file at a time.

C-Breeze [10] is an infrastructure for building C compilers. It initially parses
a program into an abstract syntax tree. Although it comes with a library of
routines that can construct control flow graphs and carry out various analyses,
these routines work on a much lower representation of the program, which is de-
rived from the abstract syntax tree. No built-in support is provided for analyzing
programs spanning several files.

The system that meets our requirements most closely is SUIF [14,8]. SUIF is
an infrastructure for compiler research, consisting of an intermediate language,
front ends for C and C++ (based on Edison’s front end), and a library of routines
to manipulate the intermediate representation. The intermediate language has
an object-oriented design and supports program representation at various levels.
The library includes transformers that can ensure most of the properties that
are part of CIL’s design. Although SUIF handles the full ANSI C language, it
does not support many of the GCC extensions that appear in programs such as
the Apache web server or the Linux kernel. For example, it cannot handle GNU-
style assembly instructions or attributes. As a result, we have not been able
to use SUIF to process large open-source projects like the Linux kernel or the
SPECINT95 gcc benchmark. In addition, compared to SUIF’s C output, CIL’s
external representation is usually closer to the original source. In many cases (e.g.
typedefs) SUIF does not retain user-supplied names, and it introduces many
extraneous casts that can confuse certain kinds of analyses, such as CCured. For
example, line 3 of the example on page 214 is emitted by SUIF as:

(((((int *) (*(((int **) (((char *) &((((struct type_1 *)
(str1))))[1]) + 0U)))))))[2]);

CIL output makes the memory accesses in this statement more apparent (as
described in Section 2), and at the same time its output stays close to the
source:

*((str1 + 1)->fld + 2);

Finally, although SUIF comes with some support for merging multiple source
files, in some cases it fails to do it correctly. For example, SUIF (version 2.2)
does not correctly handle the example described in Section 8 (although some
earlier versions appear to).

10 Conclusion and Future Work

The C programming language supports a number of features that make it attrac-
tive for systems programming. Unfortunately, many of these features are difficult
to reason about. And even though there is abundant expertise on interpreting
the constructs of the C programming language there are very few tools that
make program analysis and especially source-to-source transformation easy.
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CIL is a minimal design that attempts both to distill the C language con-
structs into a few ones with precise interpretation, and also to stay fairly close
to the high-level structure of the code so that the results of source-to-source
transformations bear sufficient resemblance to the source code. We have used
CIL successfully both for simple analyses and transformations and also for a
pervasive transformation that instruments C programs with code to ensure its
memory safety. We thus believe that CIL indeed comes close to what we desire
of an analysis and transformation infrastructure.

All of the CIL features came about in the context of one task or another that
we used CIL for. It was surprisingly difficult in the beginning to handle lvalues
and types correctly with most of the difficulties being generated by the implicit
conversions in C between an array and a pointer to its first element and between
a function and a pointer to it. We found that the most satisfactory solution to
the first of these problems was to introduce the StartOf construct that does not
exist in C. The only feature of CIL that we have not exercised as much as the
others is the embedded control-flow graph. CCured includes a simple data flow
analysis in support of array bounds checking elimination and we are starting to
use CIL in yet another project where data flow analysis will be preeminent. We
expect that out of these experiences we’ll either gain more confidence in this
part of the design or change it to better suit the needs of such analyses.

We have also found that it is extremely useful to have a whole-program
merger that can act like a compiler and can be used transparently with make-
based project. Merging errors that manage to get past the compiler and linker
can be a nightmare to find in a large program, thus it is important to specify
carefully how the merging algorithm works. We found that a restricted version
of structural type equivalence for recursive types is both simple and sufficient
for most purposes.

CIL currently handles all of ANSI C and almost all of GCC and MSVC
extensions. The exception is GCC’s trampoline extension for nested functions,
which we have yet to encounter in practice. The next step is to extend the system
to handle C++. The source code for CIL and the associated tools are available
at http://www.cs.berkeley.edu/˜necula/cil .
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